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1 Introduction

1.1 M2-brane descriptions so far

Despite much effort to formulate M-theory, it is yet far from our understanding. Regu-
larization of supermembrane theory on the light front results in a proposal of M-theory
as the supersymmetric matrix quantum mechanics [1]. However, as a first quantized the-
ory, it suffers from instability of generating spikes on membranes [2], thus, we regard it
just as a second quantized theory of partons (D0-branes) [3, 4]. Covariant regularization
was not satisfactory because the κ-symmetry fixing leads only to a 10-dimensional Lorentz
symmetric theory [5, 6].

The recently proposed theory of multiple M2-branes has attracted huge interests in
this regard [7–9]. This world-volume theory of multiple M2-branes passed the basic require-
ments of being N = 8 superconformal theory with SO(8) R-symmetry. However, we do
not yet have a manageable representation of 3-algebra, an inevitable element of the theory.

1.2 The issue in this paper

In this paper, we return to the matrix description of M-theory and see where the multiple
M2-branes enter especially in the discrete light cone quantization (DLCQ) prescription
(leading to a finite N matrix model) [10]. Though M2-branes, being composed of N D0
‘partons’, have been discussed as solutions1 of matrix quantum mechanics [11–13], what we
want to check in this paper is whether the matrix M-theory is dual to a theory of multiple
M2-branes in some limit as it is to D2-branes.

DLCQ M-theory on a torus T p is dual to other theories describing various branes [14,
15]. For example, compactified on a transverse T 2, DLCQ M-theory becomes dual to the
(2 + 1)-dimensional super Yang-Mills (SYM) theory describing multiple D2-branes. This
feature persists until p = 3, over which the dual theories become strongly coupled and
pertain to 11-dimensions.

In the conventional DLCQ prescription, the string coupling gs is proportional to
l3−ps [14]. Therefore, the theory of D2-branes, that is p = 2 case with its coupling not
large enough, cannot be promoted to that of M2-branes.

1.3 Our strategy

To realize multiple M2-branes in DLCQ prescription, one has to go to the strong coupling
regime of multiple D2-branes. One possible way for this is to exploit the M/IIB duality [16–
18]. (See refs. [19, 20] for a detailed analysis on the issue performed in the matrix theory
context.) More specifically, this duality between M-theory on a torus T 2 and IIB-theory
on a circle S1 asserts that the torus moduli of M-theory is the same as the vacuum moduli
of IIB-theory. By a complex structure deformation on the torus of M-theory, one can reach
multiple (p, q)-strings in IIB-theory, which could result in the strong coupling in IIA-theory
via T-duality.

1The solutions break the supersymmetries by half.
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The tool we employ to achieve our goal is a variant of DLCQ. The oblique DLCQ is
to tilt the momentum direction of an M-wave, off the M-circle, i.e., the direction to be
compactified. We will show that Seiberg’s rescaling used to reach M̃-theory [14] provides
the desired complex structure deformation of the torus. The directions transverse to the
tilted momentum direction will shrink to deform the torus shape. (The over-tilde stands
for a different characteristic length l̃p from that of the original M-theory.)

1.4 The organization of this paper

We organize this paper as follows. In the next section, we will recapitulate briefly the
basic idea of DLCQ prescription. We will see how the idea of relating the large but nearly
lightlike circle with the small spacelike circle, comes in our setup, M-theory on T 3 (including
the M-circle direction). Subsequently in section 3, we will explain how the oblique DLCQ
procedure deforms the complex structure of the torus T 2, a section of T 3. This leads to an
M̃-theory on a slanted 3-torus.

Our basic strategy is to go to the dual description well-suited for the small spacelike
circle limit. In section 4, we first go to a ĨIA-theory (M̃-theory on a small spacelike
circle) compactified on a 2-torus. The finite N momentum sector of the original M-theory
corresponds to N units of (D0+momentum) bound state. Since the torus size is very small,
we go over to another IIA-theory on a large torus via a IIB-theory by sequential T-duality
transformations. Section 5 concerns the IIB configuration. It turns out to be N units of
(p, q)-strings. We explicitly show that the vacuum modulus of this IIB-theory coincides
with the torus modulus of M̃-theory. This result confirms the duality between both theories
in the context of supergravity solutions. Originally, it was shown by comparing the BPS
spectra of both theories [16]. Being back to IIA-theory in section 6, we have a non-threshold
bound state of D2-F1-branes. In section 7, we estimate the order of the string coupling in
the size R̃s of small spacelike circle. It diverges as gIIA ∼ O(R̃−1/4

s ). This justifies M-lifting
of the configuration. In section 8, we eventually reach a multiple M2-brane configuration. It
implies that the oblique DLCQ M-theory on T 2 is dual to the theory of multiple M2-branes.2

We also show how the extended U-duality transformation is realized in the supergravity
context. Section 9 concludse this paper with some remarks. We compare the oblique DLCQ
scheme with the conventional DLCQ procedure. We also specify the parameters involved in
the oblique DLCQ scheme and discuss the decoupling limit. For convenience, the appendix
collects various sizes of the compact directions introduced throughout this paper.

2 DLCQ in brief

2.1 M-theory on a finite lightlike circle

For our notation setup, this section recapitulates the prescription of DLCQ as was pre-
sented in ref. [14]. This idea of DLCQ will be exploited frequently in the forthcoming parts
of this paper.

2When we say DLCQ M-theory on T p, we mean the M-theory on T p+1 with one of the circle directions

to be lightlike.
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DLCQ M-theory [10] follows the spirit of BFSS conjecture (advocated by Bank, Fis-
chler, Shenker, and Susskind [4]). BFSS proposed that the uncompactified M-theory in the
infinite momentum frame (IMF) is equivalent to the large N limit of a matrix quantum
mechanics of D0-branes. This non-perturbative definition of uncompactified M-theory in
IMF can be generalized to the finite N matrix quantum mechanics, but this time, it is
equivalent to the M-theory compactified on a lightlike circle of a finite radius [10].

The question concerning DLCQ M-theory is why the minimal super Yang-Mills matrix
quantum mechanics is enough to represent the strongly coupled theory. Conventionally we
have to include higher derivative terms in the strong coupling regime.

Refining the lightlike circle idea of DLCQ M-theory, Seiberg gave us the answer to
this question [14]. If we replace the lightlike circle with a nearly lightlike circle, clearly the
M-theory on a large nearly lightlike circle is related with the M-theory on a small spacelike
circle via a boosting. Let us consider a spacelike circle specified by the identification relation
(T, X11) ∼ (T, X11 − 2πR̃s). The parameter R̃s denotes the radius of the spacelike circle.
By the boosting, (

T

X11

)
=

(
cosh γ sinh γ
sinh γ cosh γ

)(
T ′

X ′11

)
, (2.1)

with the boosting parameter γ given by

tanh γ =
R√

R2 + 2R̃2
s

, (2.2)

one can get a nearly lightlike circle;

(T ′, X ′11) ∼ (T ′ +
2πR√

2
, X ′11 − 2π

√
R2

2
+ R̃2

s). (2.3)

More specifically in the lightcone coordinates X ′± = (T ′ ± X ′11)/
√

2, the identification is
recast as

(X ′+, X ′−) ∼ (X ′+ − πR̃2
s

R
, X ′− + 2πR+

πR̃2
s

R
). (2.4)

In R̃s/R→ 0 limit, it describes a nearly lightlike compactification of radius R along X ′−.

2.2 Seiberg’s limit

Another ingredient necessary for understanding DLCQ M-theory is that we have to rescale
the Planck length. Otherwise, the M-theory on a small spacelike circle will be reduced
to a ten-dimensional theory of weakly coupled but tensionless strings. Indeed, the ten-
dimensional string length and the string coupling are given [21] by

1
l2s

=
R̃s
l3p
, g2

s =

(
R̃s
lp

)3

. (2.5)

For fixed lp, both the string tension and the string coupling vanish as R̃s → 0. What is
worse is that the lightcone energy P ′− ∼ R/l2p, is related to the value P− ∼ R̃s/l

2
p by the

boosting (2.1), thus P− vanishes in the same limit.
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To avoid this bizarre behavior, Seiberg suggested that we introduce a new scale l̃p so
that we focus on the mode of a fixed value of P−. We keep the value,

R̃s

l̃2p
=
R

l2p
, (2.6)

finite in the limit of R̃s → 0. This newly introduced scale affects the other compact direc-
tions too, but one can control those other compact directions by redefining the numberings
on the corresponding axes. It implies that

R̃i

l̃p
=
Ri
lp

(2.7)

will be kept finite. Here, i = 1, 2, · · · p for p compact directions other than the M-circle
direction X11.

The M̃-theory (the eleven dimensional theory with the new Planck length l̃p) on the
small spacelike circle becomes ĨIA-theory whose coupling and the string length are small,
thus well-defined. Indeed,

g̃s =

(
R̃s

l̃p

) 3
2

= R̃
3
4
s

(
R

l2p

) 3
4

,

l̃2s =
l̃3p

R̃s
= R̃

1
2
s

(
l2p
R

) 3
2

. (2.8)

For compact directions, we have to take T-dualities because the sizes of those directions,

R̃i = Ri

√
R̃s
R
, (2.9)

become very small in R̃s → 0 limit. Under T-dualities, the string coupling transforms as

g̃′s = R̃
3−p
4

s

(
R

l2p

) 3(p+1)
4

p∏
i=1

Σi, Σi =
l̃2s
R̃i

=
(
lp
Ri

)(
l2p
R

)
. (2.10)

Here, the radii Σi denote the dual circle sizes. Unless p > 3, the coupling is finite and the
corresponding world-volume theory describes N stacks of Dp-branes.

3 An oblique torus

In the previous section, we observed that DLCQ M-theory on T p is dual to a theory describ-
ing multiple Dp-branes, when p ≤ 3. Especially for p = 2, the weak string coupling g̃′s ∼
O(R̃1/4

s ) implies that the dual theory describes just D2-branes but not multiple M2-branes.
In order to locate multiple M2-branes in DLCQ M-theory, we modify the setup for the

case of T 2 so that it is dual to a theory of multiple D2-branes but with its coupling strong.
Therefore we have to consider some modification of DLCQ procedure that results in the
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S-duality effect at some point on the chain of T-dualities. This might then promote the
string coupling to be very strong at the final stage of IIA-theory involving D2-branes, so
that we can go up to eleven dimensions.

The idea is to exploit the duality between M-theory on T 3 (including M-circle) and
IIB-theory on T 2 [18]. We will consider DLCQ M-theory on a slanted torus. Since the torus
modulus of M-theory corresponds to the vacuum modulus of IIB-theory, the corresponding
IIB-theory will have a non-trivial vacuum attainable from a trivial one by an S-duality.

3.1 A wave on a tilt

Suppose a rectangular 3-torus whose coordinates are identified as

x11 ∼ x11 + 2πr11, x1 ∼ x1 + 2πr1, x2 ∼ x2 + 2πr2. (3.1)

We consider a uniform wave over (x11, x1)-plane, propagating along a generic direction
tilted by an angle θ with respect to the axis x11. The wave, being compatible with the
torus periods, takes the form

ψ~k(x11, x1) ∼ exp
i

r11

(
mx11 +

1
τ2
nx1

)
. (3.2)

Here, the modulus of the rectangular torus is ~τ = (0, r1/r11).
Unless θ = 0 or π/2, this gives the relation between the mode numbers m and

n, given the radii r11 and r1. Since the wave propagates with the momentum, ~k =
(m/r11, n/(r11τ2)), the angle θ can be specified by the relation;

tan θ =
n

mτ2
=
nr11

mr1
. (3.3)

If θ = 0, the wave propagates along x11-direction and n = 0, which corresponds to the
conventional DLCQ discussed in the literatures [14, 15]. When θ = π/2, the propagating
direction is along x1-direction and m = 0. In this paper, we assume 0 < θ < π/2, thus
m 6= 0 and n 6= 0. It is also assumed that the mode number m along x11-direction is larger
than the number n along x1-direction. This latter condition is necessary to avoid some
singular point in the charge density. We will discuss it in section 8.

Instead of using the radii r11 and r1, we prefer to use some effective radii Rs and R̃s.
Upon the compactification of (x11, x1)-plane, the Kaluza-Klein wave results in the mass
M in lower dimensions;

M2 =
1

r2
11τ

2
2

(
m2τ2

2 + n2
)

=
m2

r2
11 cos2 θ

=
n2

r2
1 sin2 θ

. (3.4)

Hence one can regard the wave either as m-th Kaluza-Klein mode around a circle of an
effective radius Rs ≡ r11 cos θ , or equivalently as n-th mode around a circle of another
effective radius R̃s ≡ r1 sin θ . Written in terms of these radii, the relation (3.3) concerning
the propagation direction becomes nRs = mR̃s.

– 6 –



J
H
E
P
1
1
(
2
0
0
9
)
1
2
1

3.2 Seiberg’s limit in the oblique DLCQ

In order to describe the metric configuration for the wave, it is convenient to use the
adapted coordinate (T, X11, X1); t

x11

x1

 =

 1 0 0
0 cos θ− sin θ
0 sin θ cos θ


 T

X11

X1

 . (3.5)

The wave generates the following configuration;

ds2 = −dT 2 + dX2
11 + dX2

1 + dx2
2 + (f(r)− 1) (dT − dX11)2 +

9∑
i=3

dx2
i . (3.6)

Here, the function f(r) is a harmonic function in the transverse seven spatial directions;

f(r) = 1 +
Q

r5
, r2 =

9∑
i=3

x2
i . (3.7)

The charge parameter Q concerns the discrete momentum mode number n in the
unit of 1/R̃s (or equivalently mode number m in the unit of 1/Rs) along the propagating
direction X11. By matching the ADM momentum charge [22] with that of the wave (3.2),
one can note its form

Q ∼
l9p

r1r2r11

n

R̃s
=

l9p
r1r2r11

m

Rs
. (3.8)

Therefore, the geometry looks like that of a momentum wave along a compact spatial circle
of radius R̃s.

The background geometry of DLCQ M-theory is the Aichelberg-Sexl type metric [23]
that describes a momentum wave along a nearly lightlike circle of radius R. (This identi-
fication was first discussed in ref. [24].) By the same boosting as (2.1) (with its boosting
parameter (2.2)) the geometry becomes;

ds2 = −2dX ′+dX ′− + 2 (f − 1) e−2γdX ′−2 + dX2
1 + dx2

2 +
9∑
i=3

dx2
i

= −2dX ′+dX ′− + 2
Qe−2γ

r5
dX ′2− + dX2

1 + dx2
2 +

9∑
i=3

dx2
i . (3.9)

Now, let us bring the situation to the M̃-theory by introducing a new Planck scale
l̃p. Incorporating the scaling conditions (2.6) and (2.7), one can rescale all the coordinates
transverse to the direction of wave propagation as

T → T̃ = T
l̃p
lp

= T

(
R̃s
R

) 1
2

, X1 → X̃1 = X1

(
R̃s
R

) 1
2

,

xi → x̃i = xi

(
R̃s
R

) 1
2

(i = 2, 3, · · · , 9), (3.10)

– 7 –
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Figure 1. The rectangular torus (the left figure) in M-theory is mapped into a slanted torus
(the right figure) in M̃-theory. The wave is traveling along X11 (or X̃11) with the wave vector
~k = (m/r11, n/r1).

while keeping the coordinate X11 the same, i.e., X̃11 = X11.3 Hereafter we use α ≡ l̃p/lp
interchangeably just for typographical convenience.

3.3 The torus modulus

The axes x11 and x1 are deformed so that they are no longer orthogonal in the tilted coor-
dinates. The relation between the original coordinates (x11, x1) and the rescaled adapted
coordinates (X̃11, X̃1) is given by(

x11

x1

)
=

(
cos θ − sin θ
sin θ cos θ

)(
X̃11

X̃1/α

)
.

(3.11)

The x11-axis (
√
R̃sX̃11 sin θ +

√
RX̃1 cos θ = 0) and x1-axis (

√
R̃sX̃11 cos θ −

√
RX̃1 sin θ =

0) are intersecting at an angle ξ determined by

tan ξ =
α

cos θ sin θ (1− α2)
. (3.12)

The angle θ (specifying the propagation direction) is deformed to be θ̃ satisfying

tan θ̃ = α tan θ . (3.13)

The period vectors (2πr11, 0) and (0, 2πr1) of (x11, x1)-frame read in (X̃11, X̃1)-
plane as

(2πr11, 0) −→ (2πr11 cos θ , −2πr11 α sin θ ) ,

(0, 2πr1) −→ (2πr1 sin θ , 2πr1 α cos θ ) . (3.14)

3One could equivalently choose Rs rather than R̃s in this rescaling. However, our choice of R̃s would be

more convenient for our later use because we will mostly focus on θ → π/2 limit.

– 8 –
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Therefore, the rescaled periods are

2πR̃11 = 2πr11

√
cos2 θ + α2 sin2 θ = 2πRs

√
1 + α2 tan2 θ

= 2πRs sec θ̃,

2πR̃1 = 2πr1

√
sin2 θ + α2 cos2 θ = 2πR̃s

√
1 + α2 cot2 θ

= 2πR̃s

√
1 + α4 cot2 θ̃. (3.15)

All these are illustrated in figure 1.
Seiberg’s rescaling is a moduli transformation that transforms the rectangular torus

into a slanted torus. One can express the torus moduli as

τ̃ =
R̃1

R̃11

eiξ, (3.16)

assuming a new orthogonal frame so that the period vector ~T11 takes the components
2πR̃11(1, 0). From eq. (3.12), we note that

τ̃1 + iτ̃2 =
r1

(
cos θ sin θ

(
1− α2

)
+ iα

)
r11

(
cos2 θ + α2 sin2 θ

)
=
n cos2 θ̃

m tan θ̃

((
1− α2

)
tan θ̃ + i

(
α2 + tan2 θ̃

))
. (3.17)

The upshot is that we are considering a wave propagating on a slanted 3-torus. The
directions, (x11, x1, x2), compose the torus but it is slanted with the modulus (3.17) in
(x11, x1)-plane. The wave is of the form

ψ̃~̃
k
(X̃11, X̃1) ∼ exp

imX̃11

Rs
= exp

inX̃11

R̃s
. (3.18)

3.4 Tuning the propagation

Since we have one more parameter θ than the conventional DLCQ description, we have a
freedom to tune it. We are interested in the limit where tan θ̃ is kept finite while α → 0.
We assume 0 ≤ θ̃ < π/2 without loss of generality.

The behavior of the angle θ in this limit is obviously seen if we write it in terms of θ̃;

cos θ =
α cos θ̃√

α2 cos2 θ̃ + sin2 θ̃
,

sin θ =
sin θ̃√

α2 cos2 θ̃ + sin2 θ̃
. (3.19)

As α → 0, the angle θ either approaches 0 (when θ̃ = 0), or almost becomes π/2 (if
0 < θ̃ < π/2). In the limit, the intersection angle ξ approaches the deformed angle θ̃

because

tan ξ =
α2 cos2 θ̃ + sin2 θ̃

cos θ̃ sin θ̃ (1− α2)
−→ tan θ̃ . (3.20)

– 9 –



J
H
E
P
1
1
(
2
0
0
9
)
1
2
1

3.5 The rescaled geometry

Under Seiberg’s rescaling (3.10), the metric (3.6) becomes, in M̃-theory,

ds̃2 = −dT̃ 2 + dX̃2
11 + dX̃2

1 + dx̃2
2 +

(
f̃(r̃)− 1

)(
dT̃ − dX̃11

)2
+

9∑
i=3

dx̃2
i .

f̃(r̃) = 1 +
Q̃

r̃5
,

(
r̃2 =

9∑
i=3

x̃2
i

)
. (3.21)

The charge parameter now takes the form

Q̃ ∼
l̃9p

r̃2R̃1R̃11 sin ξ
n

R̃s
∼ α7Q, (3.22)

where the first factor concerns the 8-dimensional Newton’s constant because its denomina-
tor, r̃2R̃1R̃11 sin ξ , is the volume of the slanted 3-torus.

Rewriting the metric (3.21) in (t, x11, x1)-coordinates, we get

ds̃2 =
(
f̃ cos2 θ + α2 sin2 θ

)dx11 +
cos θ

(
α(1− f̃)dt+ (f̃ − α2) sin θ dx1

)
f̃ cos2 θ + α2 sin2 θ

2

+
α2f̃

f̃ cos2 θ + α2 sin2 θ

(
dx1 +

(1− f̃)α sin θ dt
f̃

)2

− α2dt2

f̃
+ α2

9∑
i=2

dx2
i ,

which is a form ready for the compactification along x11-direction.

4 ĨIA: a bound state of D0-branes and momenta

One thing to note regarding the compactification is that, the lower dimensional asymptotic
geometry is flat but the coordinates are not Minkowskian. To follow the standard IIA
description, we recover the asymptotically Minkowskian coordinates,

x̃11 ≡ x11

√
cos2 θ + α2 sin2 θ =

αx11√
α2 cos2 θ̃ + sin2 θ̃

,

x̃1 ≡
αx1√

cos2 θ + α2 sin2 θ
= x1

√
α2 cos2 θ̃ + sin2 θ̃ ,

t̃ = α t, x̃i = αxi (i = 2, 3, · · · , 9). (4.1)

The coordinate x̃11 is compact as x̃11 ∼ x̃11 + 2πR̃11. The small circle size justifies the
compactification to IIA-theory.
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In type IIA language, the configuration looks like

ds2
IIA =

f̃√
f̃ cos2 θ̃ + sin2 θ̃

(
dx̃1 +

1− f̃
f̃

sin θ̃ dt̃

)2

+
√
f̃ cos2 θ̃ + sin2 θ̃

(
− 1
f̃
dt̃2 +

9∑
i=2

dx̃2
i

)
,

eφ =
(
f̃ cos2 θ̃ + sin2 θ̃

) 3
4 R̃11

l̃s
,

C(1) =
cos θ̃

f̃ cos2 θ̃ + sin2 θ̃

(1− f̃
)
dt̃+

(
f̃ − α2

)
sin θ̃

α2 cos2 θ̃ + sin2 θ̃
dx̃1

 , (4.2)

where (R̃11/l̃p)3 = (R̃11/l̃s)2 was used. In α→ 0 limit, the configuration describes n units
of D0+momentum bound state with the momentum flowing along x̃1-direction. When
θ̃ = 0, it corresponds to n-unit of D0-branes, while the configuration becomes that of a
momentum wave along x̃1-direction when θ̃ approaches π/2.

5 ĨIB : (p, q)-strings

We have still a small compact direction as x̃1 ∼ x̃1 +2πr̃1. From r1 = R̃s/ sin θ and (3.19),
we note that

r1 =
R̃s
√
α2 cos2 θ̃ + sin2 θ̃

sin θ̃
. (5.1)

It implies that the size r̃1 shrinks with R̃s;

r̃1 = r1

√
α2 cos2 θ̃ + sin2 θ̃ =

R̃s

(
α2 cos2 θ̃ + sin2 θ̃

)
sin θ̃

. (5.2)

The small circle size r̃1 justifies the T-duality into the IIB configuration. Taking the
T-duality along x̃1-direction, we get

ds2
IIB =

1
f̃

√
f̃ cos2 θ̃ + sin2 θ̃

(
−dt̃2 + dx̄2

1

)
+
√
f̃ cos2 θ̃ + sin2 θ̃

9∑
i=2

dx̃2
i ,

eφB =
f̃ cos2 θ̃ + sin2 θ̃√

f̃

R̃11

l̃s

r̄1

l̃s
. (5.3)

The dual coordinate x̄1 is compact as x̄1 ∼ x̄1 + 2πr̄1, where

r̄1 =
l̃2s sin θ̃

R̃s

(
α2 cos2 θ̃ + sin2 θ̃

) . (5.4)

– 11 –



J
H
E
P
1
1
(
2
0
0
9
)
1
2
1

The NS-NS field and R-R fields,

B̄(2) = −1− f̃
f̃

sin θ̃ dt̃ ∧ dx̄1,

C̄(0) =

(
f̃ − α2

)
tan θ̃(

α2 cos2 θ̃ + sin2 θ̃
)(

f̃ + tan2 θ̃
) ,

C̄(2) =

(
f̃ − 1

)
cos θ̃

f̃ cos2 θ̃ + sin2 θ̃
dt̃ ∧ dx̄1, (5.5)

describe, in α → 0 limit, (p, q)-strings along x̄1-direction in a non-trivial background of
the D-instanton and the dilaton field.

The vacuum modulus of the IIB configuration coincides with the torus modulus of the
M̃-theory. This was originally proven in refs. [16–18] by comparing the BPS spectra of both
theories. Here, we confirm it in the context of supergravity. Let us compute the vacuum
modulus of the above background. One might naively write it as (C̄(0) + ie−φB )

∣∣
r→∞.

However, we should recall that the vacuum modulus in IIB-theory is determined in the
canonical frame rather than in the string frame. This correction gives an extra dilatonic
factor e−φB |r→∞ = g−1

IIB in every R-R field. Incorporating this factor, we get the following
result for the vacuum modulus of the IIB background;

(χ+ ie−φB )
∣∣∣
r→∞

=
r1

(
(1− α2) cos θ sin θ + iα

)
r11(cos2 θ + α2 sin2 θ )

. (5.6)

Here, we used χ ≡ g−1
IIBC̄

(0) and eqs. (5.3) and (5.4). This result coincides with the
expression (3.17) for the torus modulus. Especially one can see that tilting DLCQ direction
with respect to the M-circle generates the axion field χ in type IIB-theory.

6 Back to ĨIA: a non-threshold D2-F1 bound state

Since the size of the compact direction in our IIB-configuration is still small as r̃2 = αr2, it
is desirable to go back to ĨIA-theory via T-duality along x̃2-direction. As its results, we get

ds̄2
IIA′ =

√
f̃ cos2 θ̃ + sin2 θ̃

f̃

(
−dt̃2 + dx̄2

1

)
+

1√
f̃ cos2 θ̃ + sin2 θ̃

dx̄2
2

+
√
f̃ cos2 θ̃ + sin2 θ̃

9∑
i=3

dx̃2
i , (6.1)

eφ̄A =
1√
f̃

(
f̃ cos2 θ̃ + sin2 θ̃

) 3
4 R̃11

l̃s

r̄1

l̃s

r̄2

l̃s
, (6.2)

where the dual radius is given by

r̄2

l̃s
=
l̃s
r̃2

=
l̃s
αr2

. (6.3)
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(We discern this ĨIA-theory on the dual torus T̄ 2 from the initial ĨIA on T 2 by the subscript
‘IIA′ ’ or the overbar ‘¯’ on the variables.)

The NS-NS and R-R fields become

B̄(2) = −1− f̃
f̃

sin θ̃ dt̃ ∧ dx̄1,

C̄(1) = −

(
α2 − f̃

)
tan θ̃(

α2 cos2 θ̃ + sin2 θ̃
)(

f̃ + tan2 θ̃
)dx̄2,

C̄(3) =

(
f̃ − 1

)
cos θ̃

f̃ cos2 θ̃ + sin2 θ̃
dt̃ ∧ dx̄1 ∧ dx̄2. (6.4)

In the limit of α→ 0, the configuration describes some D2-F1 bound state that interpolates
D2-branes (when θ̃ = 0) and F1-branes (if θ̃ → π/2).

7 Orders of various parameters in R̃s

The coupling constant gIIA′ = limr→∞ e
φ̄A diverges in the limit of α→ 0. To see this, we

use the basic scaling relations used in M̃-theory;

R̃s

l̃2p
=
R

l2p
≡ A, r̃2

l̃p
=
r2

lp
≡ B2. (7.1)

Here A and B2 are some constants of finite quantity. Therefore

l̃p =
√
R̃sA

− 1
2 , l̃s = R̃

1
4
s A
− 3

4 ,

r̃2 = αr2 =
l̃p
lp
r2 =

√
R̃sA

− 1
2B2,

R̃11 = r11

√
cos2 θ + α2 sin2 θ =

Rs

cos θ̃
=

mR̃s

n cos θ̃
,

r̃1 = r1

√
α2 cos2 θ̃ + sin2 θ̃ =

R̃s

sin θ̃

(
α2 cos2 θ̃ + sin2 θ̃

)
. (7.2)

The factors composing the string couplings take the orders as follow;

R̃11

l̃s
=
mR̃

3
4
s A

3
4

n cos θ̃
,

r̄1

l̃s
=

l̃s
r̃1

=
sin θ̃

R̃
3
4
s A

3
4

(
α2 cos2 θ̃ + sin2 θ̃

) ,
r̄2

l̃s
=

l̃s
r̃2

=
1

R̃
1
4
s A

1
4B2

. (7.3)
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This implies that

gIIB =
m sin θ̃

n cos θ̃
(
α2 cos2 θ̃ + sin2 θ̃

) ,
gIIA′ =

m sin θ̃

n cos θ̃
(
α2 cos2 θ̃ + sin2 θ̃

)
R̃

1
4
s A

1
4B2

. (7.4)

Though the coupling constant gIIB is finite, the coupling constant gIIA′ diverges.4

8 M-theory: multiple M2-branes

8.1 A new Planck length

For a sensible description of the configuration with the strong coupling gIIA′ , it is reasonable
to go up to the eleven dimensions;

ds̄2
M = f̃−

2
3
(
−dt̃2 + dx̄2

1

)
+

f̃
1
3

f̃ cos2 θ̃ + sin2 θ̃
dx̄2

2 + f̃
1
3

9∑
i=3

dx̃2
i

+
f̃ cos2 θ̃ + sin2 θ̃

f̃
2
3

dx̄11 −

(
α2 − f̃

)
cos θ̃ sin θ̃(

α2 cos2 θ̃ + sin2 θ̃
)(

f̃ cos2 θ̃ + sin2 θ̃
)dx̄2

2

,

C(3) =

(
1− f̃

)
sin θ̃

f̃
dt̃ ∧ dx̄11 ∧ dx̄1 +

cos θ̃
(
f̃ − 1

)
f̃ cos2 θ̃ + sin2 θ̃

dt̃ ∧ dx̄1 ∧ dx̄2. (8.1)

Here the coordinate x̄11 is compact with the radius

r̄11

l̄p
=

(
R̃11r̄1r̄2

) 2
3

l̃2s
, (8.2)

where

l̄p =
(
R̃11r̄1r̄2

) 1
3
. (8.3)

This new Planck constant comes as a result of an oblique DLCQ and two successive
T-duality transformations on the M-theory configuration. The identification of string T-
duality transformations as the transformation of Planck constant in M-theory was first
discussed by Susskind [25]. We will come back to this point later.

We have a configuration in M-theory characterized by the Planck constant l̄p. As
α→ 0, the circle size r̄11 remains finite as

r̄11 =
m sin θ̃

n cos θ̃
(
α2 cos2 θ̃ + sin2 θ̃

)
AB2

∼ m

n cos θ̃ sin θ̃ AB2

, (8.4)

4When n = 0, thus θ = 0, we have to replace (m sin θ )/n by Rs/r1 because r1 is then independent of

Rs. This recovers the order estimations of gIIB ∼ O(R
1/2
s ) and of gIIA ∼ O(R

1/4
s ) of the standard DLCQ

procedure discussed in [14].
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while the new Planck length shrinks to zero making the M-theory description well-defined;

l̄3p =

√
R̃sm sin θ̃

n cos θ̃
(
α2 cos2 θ̃ + sin2 θ̃

)
A

5
2B2

∼ m
√
R̃s

n cos θ̃ sin θ̃ A
5
2B2

. (8.5)

8.2 Multiple M2-branes

The geometry describes a number of M2-branes spanning the direction x̄1 and another
direction in the (x̄2, x̄11)-plane while they are smeared over a circle along the residual
direction in the same plane. To see this, let us first consider the ADM mass attainable
from the above geometry (8.11) á la Myers-Perry [22]:

16πḠNµ = 16πḠ(8)
N M = 5ω6Q̃. (8.6)

Here, ω6 = 16π3/15 represents the volume of a unit 6-sphere. We used here the New-
ton’s constant ḠN (∼ l̄9p) in 11-dimensions, thus µ is the mass density over the directions
{x̄11, x̄1, x̄2}. On the other hand, the charge is read off from the field strength;

q =
1

16πḠN

∫
∗dC(3) =

10πQ̃
(
r̄2 sin θ̃ − r̄11 cos θ̃

)
ω6

16πḠN
. (8.7)

Strictly to say, q is the charge density over two-dimensional spatial world-volume. From
the above two equations, we note the relation between the mass density over 3-volume and
the charge density over 2-volume as

q = 2π
(
r̄2 sin θ̃ − r̄11 cos θ̃

)
µ. (8.8)

This corresponds to BPS relation and suggests that the M2-branes are smeared along a
circle of radius ‘|r̄2 sin θ̃ − r̄11 cos θ̃|’. This radius vanishes only when

α2 cos2 θ̃ + sin2 θ̃ =
m

n
. (8.9)

To avoid this singular point in the charge density over 3-volume, we have assumed at the
earlier stage that m > n.

8.3 The geometric configuration

One can rewrite the configuration (8.11) in the conventional form of M2-branes by intro-
ducing new coordinates;(

X̄2

X̄11

)
=

(
α2 cos θ̃

α2 cos2 θ̃+sin2 θ̃
− sin θ̃

sin θ̃
α2 cos2 θ̃+sin2 θ̃

cos θ̃

)(
x̄2

x̄11

)

=

(
cos θ̃ − sin θ̃
sin θ̃ cos θ̃

)(
1 0

(1−α2) cos θ̃ sin θ̃

α2 cos2 θ̃+sin2 θ̃
1

)(
x̄2

x̄11

)
. (8.10)

In the new coordinates, the geometry becomes

ds̄2
M = f̃−

2
3
(
−dT̄ 2 + dX̄2

1 + dX̄2
2

)
+ f̃

1
3

(
9∑
i=3

dX̄2
i + dX̄2

11

)
, (8.11)
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Figure 2. A number of multiple M2-branes are spanning the direction x̄1 and another direction in
the (x̄2, x̄11)-plane. The coordinates {x̄2, x̄11}, forming a slanted torus, are oblique with respect
to the orthogonal coordinates {X̄ ′

2, X̄
′
11}.

where T̄ = t̃, X̄1 = x̄1, X̄i = x̃i. Especially as α vanishes, the same transformation gives
the standard form of 3-form field.

The Iwasawa decomposition [26](the SL(2, R) element factorized into an SO(2, R)
element and a lower triangular matrix with unit diagonal entries) used in the last line
of (8.10) enables us to figure out the geometrical configuration of these M2-branes. The
X̄2-axis, one of the brane world-volume, is tilted at an angle θ̃ with respect to the X̄ ′2-
axis of an orthogonal frame (X̄ ′2, X̄

′
11). The lower triangular matrix tells us that the

frame (x̄2, x̄11) is oblique. The lower off-diagonal element of the triangular matrix can be
expressed in terms of the angle ξ that was defined in eqs. (3.12) and (3.20);

(1− α2) cos θ̃ sin θ̃
α2 cos2 θ̃ + sin2 θ̃

= cot ξ . (8.12)

We see that the x̄2-axis and x̄11-axis, which were used in (8.11), are intersecting at the
angle ξ. The M2-branes are wrapped around this 2-torus but the direction x̄1 unfolds itself
in the limit of α → 0. The size r̄1 diverges as O(R−1/2

s ) while the sizes r̄2 and r̄11 are of
O(1). Figure 2 illustrates the situation.

8.4 T-duality in the DLCQ M-theory

Let us make some remarks on the effect of T-dualities on the DLCQ M-theory. Since
the strong coupling gIIA′ justifies the uplift to M-theory, it would be meaningful to trace
the implication of T-duality transformations in the DLCQ M-theory. We expect some
transformation on the eleven dimensional Planck length. Indeed, recasting the right hand
side of eq. (8.3) in terms of the old variables with tilde, one can verify, in the context of
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supergravity solution, the following relation;

l̄3p = R̃11 ·
l̃2s sin θ̃

R̃s

(
α2 cos2 θ̃ + sin2 θ̃

) · l̃2s
r̃2

=
tan2 θ̃

α2 tan2 θ

l̃6p

r̃1r̃2R̃11

=
l̃6p

r̃1r̃2R̃11

, (8.13)

In the second line, we used the relations

R̃s = r1 sin θ = r̃1
sin2 θ

sin θ̃
,

1
α2 cos2 θ̃ + sin2 θ̃

=
cos2 θ

α2 cos2 θ̃
. (8.14)

The result (8.13) is compatible with the order dependence shown in tables 1 and 2. We
can apparently see that the order difference of r̃1 from r̃2 in the denominator makes the
new Planck length l̄p vanishingly small in α→ 0 limit.

T-duality transformation in M-theory has been studied in various contexts. Especially
the relation (8.13) looks very similar to eq. (9) of ref. [25], where the corresponding relation
was obtained in the context of BFSS M(atrix) theory. (See also refs. [27–29] and [30].)

However, we stress that the above relation (8.13) works for the oblique DLCQ M-
theory on T2, while the result of ref. [25] is for BFSS M(atrix) theory on T3. Eq. (9) of
ref. [25] can be expressed in our notation as

l̄3p =
l̃6p

r̃1r̃2r̃3
. (8.15)

Though both eqs. (8.13) and (8.15) involve three directions, the spacelike direction concern-
ing r̃3 of (8.15) has been replaced in eq. (8.13) by the M-circle direction concerning R̃11.

This difference is reminiscent of the extended U-duality group discussed in ref. [31],
where it was argued that the U-duality group Ep(Z) of DLCQ M-theory on T p should be
enhanced to Ep+1(Z) if it is unaffected by the lightlike compactification. DLCQ M-theory
on T p is nothing but M-theory on T p×S− where S− is the nearly lightlike circle. Since this
latter circle is obtained from the spacelike circle via infinite boosting, it looks reasonable
to think that the theory should involve the U-duality group for the M-theory on T p+1, that
is Ep+1(Z), in some way.

The so-far discussed T-duality transformation in the oblique DLCQ M-theory corre-
sponds to a Weyl generator of the extended U-duality group E3(Z) = SL(3,Z)×SL(2,Z),
but has a slight difference from that of ref. [31]. Indeed the relation (8.13) is accompanied
by the following relations among the compactification sizes;

r̄1 =
l̃2s
r̃1

=
l̃3p

R̃11r̃1

, r̄2 =
l̃2s
r̃2

=
l̃3p

R̃11r̃2

, r̄11 =
R̃11r̄1r̄2

l̃2s
=

l̃3p
r̃1r̃2

. (8.16)

The transformation involves three directions and composes the Z2 sector of the Weyl group
W(E3(Z)) = Z2 ./ S3. (Here, the symbol ./ implies the group generated by two non-
commuting subgroups.) The second factor S3 is nothing but the permutation group of three

– 17 –



J
H
E
P
1
1
(
2
0
0
9
)
1
2
1

spacelike directions. In our results, both of the directions concerning R̃11 = r̃11 and r̄11 are
spacelike while ref. [31]5 involves the lightlike direction X ′− of eq. (2.4) (in our language).

Consequently, the existence of the above Weyl group strongly suggests that the ex-
tendend U-duality can be realized between the M̃-theory on an oblique torus (rather than
the M-theory on a rectangular torus) and the M-theory on another oblique torus. The
U-duality is actually affected by infinitely boosting the spacelike circle of radius R̃11 to
the nearly lightlike circle of radius R, though it was assumed not in ref. [31]. The lower
dimensional Newton constant is not invariant in the DLCQ limit. From the relations (8.13)
and (8.16), we obtain

r̄1r̄2r̄11

l̄9p
=
r̃1r̃2r̃11

l̃9p
=
r1r2r11

α7l9p
. (8.17)

Seiberg’s limit modifies the 8-dimensional Newton constant of the M-theory (on a rectangu-
lar torus) by a rescaling factor, though trivial. Therefore the extended U-duality becomes
transparent only after Seiberg’s limit has been taken.

The long chain of duality transformations, taken in this paper, realizes the Weyl gen-
erator relating the momentum wave on the internal torus in M̃-theory and the multiple
M2-branes in M-theory. Eqs. (8.13) and (8.16) should give the energy relation for those two
states. In order to make sense of the M-theory, we devised the oblique DLCQ resulting in
the infinite string coupling at the IIA stage. One can see from eq. (3.6) that the n quanta
of lightlike momentum wave in M̃-theory has the ADM energy

P 0 = P 11 =
n

R̃s
=
n sin θ̃
r̃1

. (8.18)

In the last equality, we used eq. (5.2) in α → 0 limit. Applying the aforementioned U-
duality transformation (more precisely its inverse transformation), we obtain

nr̄1r̄11 sin θ̃
l̄3p

. (8.19)

This turns out to be the energy of n-tuple of M2-branes wrapped over (X̄1, X̄2)-directions
of eq. (8.11), because

X̄1 = x̄1, X̄2 = x̄2

(
cos θ̃ − cot ξ sin θ̃

)
− x̄11 sin θ̃ (8.20)

and X̄2 → −x̄11 sin θ̃ in DLCQ limit, that is when α→ 0.

9 Discussions

We showed that the oblique DLCQ limit on M-theory compactified on a torus T 3, one of
which is the M-circle, is dual to the S-duality transformation of type IIB string theory
on T 2. The deformed torus moduli of M-theory coincide with the transformed vacuum
moduli of IIB-theory. The momentum wave propagating along a direction interpolating
the M-circle direction and another in T 3 is dual to multiple (p, q)-strings of IIB-theory.

5In ref. [31], for convenience, the roles of r̃1 and r̃2 were interchanged by the exchange transformation S12.
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parameters gIIA gIIB gIIA′ l̃p l̃s l̄p

Oblique DLCQ O(R̃
3
4
s ) O(1) O(R̃

− 1
4

s ) O(R̃
1
2
s ) O(R̃

1
4
s ) O(R̃

1
6
s )

DLCQ O(R̃
3
4
s ) O(R̃

1
2
s ) O(R̃

1
4
s ) O(R̃

1
2
s ) O(R̃

1
4
s ) ·

Table 1. For (oblique) DLCQ M-theory on T 2, the table shows various parameters in the order
of R̃s: The second line is for the oblique DLCQ prescription while the third row is for the
conventional DLCQ.

radii R̃11 r̃1 r̃2 r̄11 r̄1 r̄2

Oblique DLCQ O(R̃s) O(R̃s) O(R̃
1
2
s ) O(1) O(R̃

− 1
2

s ) O(1)

DLCQ O(R̃s) O(R̃
1
2
s ) O(R̃

1
2
s ) · O(1) O(1)

Table 2. The sizes of various radii in the order of R̃s. In contrast to the conventional DLCQ, the
oblique DLCQ makes the order of r̃1 follow that of R̃11 rather than that of r̃2.

Hence, the coupling of IIA string theory dual to the aforementioned IIB-theory diverges
and enhances the non-threshold bound state of D2-F1, the dual cousin of (p, q)-strings, to
multiple M2 branes.

In table 1 and 2, we compare the oblique DLCQ and the conventional DLCQ concerning
the R̃s-order dependence of various parameters. In the conventional DLCQ on T 2, there
is no notion of l̄p or r̄11 because the coupling gIIA′ remains finite in R̃s → 0 limit.

9.1 DLCQ vs. the oblique DLCQ

The discrepancy from the conventional DLCQ results comes from the order difference
between r̃1 and r̃2, i.e., the rescaled radii of the directions transverse to the DLCQ direction.
Table 1 shows various parameters in the order of R̃s. Though the orders of the fundamental
lengths, l̃p and l̃s, are the same, the order of the coupling constant deviates from that of
the conventional DLCQ after the first T-duality toward the IIB-theory. More specifically
to say, the string coupling

gIIA =
R̃11

l̃s
∼ O(R̃

3
4
s ) (9.1)

acquires a new factor concerning the asymptotic dilaton value at each step of T-duality;

gIIB =
R̃11

l̃s

r̄1

l̃s
, gIIA′ =

R̃11

l̃s

r̄1

l̃s

r̄2

l̃s
. (9.2)

As we see in tables 1 and 2, the factor r̄1/l̃s takes the order

r̄1

l̃s
=
l̃s
r̃1

=

O(R̃
− 3

4
s ) Oblique DLCQ

O(R̃
− 1

4
s ) DLCQ

(9.3)

while the other factor r̄2/l̃s = l̃s/r̃2 is of the same order O(R̃−1/4
s ) in both DLCQ’s.
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9.2 Parameters of the oblique DLCQ prescription

Let us mention the relation between various parameters we introduced in the oblique DLCQ
prescription and those involved in the resulting configuration of the multiple M2-branes.

There are five parameters engaged in the oblique DLCQ prescription. The number n
representing the momentum sector, the M-circle size R11, the sizes r1 and r2 of T 2, and
the tilting angle θ̃. In the M2 world-volume theory, these parameters are to be encoded
into the parameter set composed of the three torus moduli (one Kahler structure modulus
r̄11 and one set of complex structure modulus r̄2/r̄11, ξ), the size r̄1 of the other compact
direction, the charge (number) Q̃ of M2-branes. The charge Q̃ of M2-branes are related to
the mass of those branes via eq. (8.6).

Though we do not know at hand how this number is encoded into the world-volume
theory of M2-branes, it concerns the gauge group U(n) in its corresponding IIA theory,
that is, (2 + 1)-dimensional SYM world-volume theory of D2-branes. The number n is
determined by eq. (3.22).

9.3 Decoupling limit

In the DLCQ limit, the bulk graviton decouples due to the small Planck length l̄p ∼
O(R̃1/6

s ). The coupling constant κ̄ = l̄
9/2
p becomes weak in the limit.

Any possible excitation of M2-branes is suppressed too in the same limit because a
single M2-brane has the tension 1/l̄3p. The DLCQ limit corresponds to the low energy
limit. Especially the momentum flow on M2-branes is an excitation accompanying the
transverse oscillation of the branes. This will break the supersymmetry by half. For
example the momentum flow along the x̄1-direction in figure 2 is dual to the momentum
flow on multiple (p, q)-strings in ĨIB-theory. This configuration of (p, q)-helices preserves
only 8 supersymmetries as discussed in ref. [32].

The interaction with M5-branes is also disfavored. First, M5-branes, even if they are
wrapped on the compact three dimensions of (x̄11, x̄1, x̄2), are very massive compared to
M2-branes. The tension TM5 of M5-branes wrapped on the compact directions will be of
the order

TM5 ∼
r̄11r̄1r̄2

l̄6p
∼ O(R̃−1

s )TM2. (9.4)

Therefore M5-branes cannot be excited energetically by their interaction with M2-branes.
Second, the supersymmetry is generically broken by their interaction. Even the bound
configuration of M2- and M5-branes can maintain 8 supersymmetries at most.

9.4 Outlook on the world-volume theory of multiple M2-branes

Despite the tempered decoupling limit for the M2-configuration in M-theory, the world-
volume theory is involved with the strong Yang-Mills coupling even at the classical level.
Since Yang-Mills coupling carries the dimensionality of the inverse length in (2 + 1)-
dimensions, it is represented as

g2
YM = gIIA′ l̃

−1
s =

r̃11

r̃1r̃2
=
r̄2

11

l̄3p
. (9.5)
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Here, we used eq. (9.2). The last equality gives the expression in M-theory. With the help
of tables 1 and 2, we note that g2

YM ∼ O(R̃−1/2
s ), thus is divergent in DLCQ limit. In order

to avoid this infinite coupling, one could consider taking the other Weyl group elements of
the extended U-duality group, that is, the permutations in S3, but it cannot change the
situation much.

We reached a bizarre situation now. At low energy less than 1/l̄p, the world-volume
theory is decoupled from the bulk gravity and is approximated as a field theory. Since
the U-duality transformation does not change the supersymmetry, the most promising
candidate will be the N = 8 super Yang-Mills theory with the adjoint matter fields in
(2 + 1)-dimensions. The theory has the infinite Yang-Mills coupling. This latter feature
is not new to us because the coupling of (2 + 1)-dimensional Yang-Mills theory, though
is well-tempered in the UV regime, runs to the infinity in the IR regime. However in the
present theory, we have to consider the infinite Yang-Mills coupling at the classical level.

We do not have a clear view on this theory at hand, but our naive conjecture is that
taking the infinite coupling limit on the Yang-Mills theory will remove all the dynamical
terms and the theory will become (2 + 1)-dimensional version of the IKKT matrix model
type [33]. Further study should be followed on this and its physical implication.
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A Various periods of the internal torus

In this appendix, we collect the relations among various periods of the internal torus, which
are scattered around throughout this paper.

• Periods of the rectangular torus in M-theory (eq. (3.1)): (r11, r1, r2)

• The Effective period of the plane wave propagating on a tilt (eq. (3.4)):
Rs = r11 cos θ , or R̃s = r1 sin θ

• Periods of the oblique torus in M̃-theory (eq. (3.15)): (R̃11, R̃1, r̃2)

R̃11 =
Rs

cos θ̃
= r11

√
cos2 θ + α2 sin2 θ

R̃1 = r1

√
sin2 θ + α2 cos2 θ

r̃2 = αr2

• Periods in the asymptotically Minkowskian coordinates in ĨIA theory
(eqs. (4.1), (5.2)): (r̃11, r̃1, r̃2)

r̃11 = R̃11

r̃1 = r1

√
sin2 θ̃ + α2 cos2 θ̃ =

R̃s

(
α2 cos2 θ̃ + sin2 θ̃

)
sin θ̃

r̃2 = αr2
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• Periods in ĨIA′ theory (eqs. (5.4), (6.3)): (r̃11, r̄1, r̄2)

r̄1 =
l̃2s
r̃1

r̄2 =
l̃2s
r̃2

(A.1)

• Periods in M -theory (eqs. (8.2), (8.3)): (r̄11, r̄1, r̄2)

r̄11

l̄p
=

(r̃11r̄1r̄2)
2
3

l̃2s

l̄p = (r̃11r̄1r̄2)
1
3

(A.2)
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